コンセプトに含まれる技術の説明

留意事項

- ① 省エネ技術の選定・採用にあたっては、その組み合わせによって CO₂削減効果が異なることがある。
- ② 各技術の同時採用の可否については、詳細な設計とともに検討する必要がある。
- ③ 下表の一つの技術の中にも複数の対応方法があり、それぞれ CO₂ 削減効果や導入コストは異なる。
- ④ 船種やサイズ、運航方法によって、採用の可否や CO₂ 削減効果が異なる。

モード	分類	技術	概要
運航	エンジン	高効率エンジン	● エンジンの高効率化技術としては、電子制御技術やコモンレールシステムの採用、カム形状
	効率改善		や噴射タイミングの変更、過給機の最適化・高性能化など、多くの方法がある。
			● 例えば、大出力・低速ディーゼルエンジン向けの電子制御技術としては、従来の機械式カム
			シャフトの機能に油圧制御を備え、燃料噴射と排気バルブのタイミングを最適化する技術な
			どがある。
			● コモンレールシステムは、ポンプによって生成される高圧燃料を蓄える燃料噴射システムで
			ある。インジェクタによって、燃料噴射の開始と終了を制御することによって高効率化が図
			られる。
			 ● カム形状の変更などのエンジンチューニングによって、燃焼状態の最適化を図ることができ
			る。ただし、電子制御技術と比べると、すべての負荷範囲において高効率化を図るのは難し
			V_{\circ}
			■ 過給機の最適マッチングや高効率過給機の採用なども省エネ効果が高い技術である。
			● それぞれの船舶においては、通常の運航に適したエンジン出力があり、過剰な出力のエンジ
		適化	ンを搭載することは燃料消費の増大を招くこととなる。
			■ エンジン出力の最適化は、エンジンの運転に必要となる周辺機器を含めて、無駄のないエネ
			ルギー消費とする技術である。
3	推進効率	☑ 高効率プロペラ	● 実運航時のエンジン出力と要求される船速に合わせて、最適化されたプロペラを搭載する技
	改善		術などがある。
		運航 エンジン 効率改善 推進効率	運航 エンジン 効率改善 高効率エンジン エンジン出力の最適化 推進効率 高効率プロペラ

			● 高効率プロペラの一例として、二重反転プロペラ(反対方向に回転する2つのプロペラを同
			軸に配置する推進装置)の採用がある。前方のプロペラによって生成される推進方向以外の
			エネルギーを後方のプロペラで回収・補正することにより、高効率を達成する。
4		省エネ付加物	● 省エネ付加物は、取り付ける場所や効果によって様々な形式がある。省エネ付加物は、推進
			効率改善と抵抗低減の両者に貢献する技術であり、船体形状や運航に合わせた最適技術の採
			用が重要である。
			● 例えば、プロペラの前方に取り付けるダクトやフィン、プロペラの後方に取り付けるプロペータ
			ラボスキャップや舵バルブなどがあり、それらを組み合わせて使用することもできる。
5		(プロペラ軸の)1	★ 大型フェリーや高速旅客船など、現状、2本のプロペラ軸を持つ船舶が対象である。
		軸化	★ 大径・高効率プロペラを採用することができ、船型改善などを行うことで高い省エネ効果が
			期待できるばかりでなく、必要機器を削減することで低コスト化も可能である。
			● 一方、本技術の課題として、冗長性を含めた安全性確保、運航海域や港の制限による喫水条
			件などがある。
6		低摩擦軸受	● 船尾管に低摩擦な軸受を用いる技術である。従来から広く用いられてきたゴム軸受を、樹脂
			材料などの摩擦係数が低い材料を接触面に使用することによって省エネ化が図られる。
7		プロペラ健全化	● プロペラ健全化とは、プロペラ表面粗さを維持するための整備や研磨、プロペラ表面の付着
		(健全性の維持)	物を洗浄・除去する技術であり、通常、船のドック中または停泊中に手作業で実施される。
			● 新造船に適用する技術ではなく、就航船に適用する技術である。
8	抵抗低減	船型改善	ナンス計画が重要である。
0	15/1/11/5/19/	加至以音	● 船型改善の方法としては、水槽試験や CFD (Computational Fluid Dynamics、数値流体力
			学)による最適設計があり、その結果として船体抵抗低減が図られる(No.16, No.17 参照)。
			● 様々な船型改善の方法があるため、CO ₂ 削減効果の推定には注意が必要である。
			● 標準船型と比べるとコスト増加が見込まれる。コスト増加分には初期の設計費が含まれてい
		I. L. MILLER	るため、将来コストについては明確でない。
9		空気潤滑	● 船底表面を気泡で覆うことにより、船体の摩擦抵抗を減らす技術である。

			No. attribute and a state of the state of th
10		1	● 浅い喫水と広い平らな船底形状を備えた船は適用しやすい。
10		低摩擦塗料	● 海洋生物の付着防止、船体表面の摩擦抵抗低減によって省エネ効果が得られる。
			● 各塗料メーカによって、様々な低摩擦塗料が開発・製品化されている。
11		船体健全化(健全	● 船体表面の滑らかさの維持、船体に付着した海洋生物の除去によって、船の摩擦抵抗を減ら
		性の維持)	す技術である。
			● 高圧水流による洗浄や砥粒を用いた研磨(フルブラスト)などの方法がある。
			● 新造船に適用する技術ではなく、就航船に適用する技術である。
			● 船体健全化を能率的に実施するためには、船体性能の定期的な性能監視と適切なメンテナン
			ス計画が重要である。
12		低抵抗スラスタト	● スラスタトンネルなどの船体開口部は船体抵抗増加の要因となり得る。すなわち、船体開口
		ンネル	部の最適化を行うことによって、開口部における水流の影響を減らすことができる。
			● トンネル型スラスタについては、運航時にスラスタトンネルを塞ぐ技術、トンネル形状を工
			夫する技術などがある。
13		船体軽量化	● 構造部材の見直しやアルミニウム合金、コンポジット材料の利用によって、船体の軽量化を
			図る技術である。
			● 船舶の安全性を維持するため、適切な構造解析技術が重要である。
14			● 水面上船体の風圧抵抗の低減は抵抗低減技術の一つである。
			● 例えば、風の当たる船体や上部構造物の前縁に丸みをつけて流れを整流する方法、丸みの代
			わりに隅を階段状にカットする方法などがある。ただし、流体抵抗は流体の密度に比例し、
			空気の密度は水の密度の約 1/800 であり、風圧抵抗は水面下船体に働く水の抵抗に比べると
15		 省エネ付加物	非常に小さい。
16	高度設計	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	● No.4 と同じであり、推進効率改善と抵抗低減の両者に貢献する技術である。
16	商 及 畝 計 技術	・ 水槽試験による最 適設計	 ● 現状、船型開発における最も精度の高い検証方法は曳航水槽試験である。
	נוא אל		● 本設計技術を活用して、船型改善 (No.8) や省エネ付加物 (No.4、No.15) などの技術を支
			援できる。
			● ただし、内航船においては十分な水槽試験は行われていない。船体模型製作などのコスト面

		のハードルがやや高い。
		● CFD(Computational Fluid Dynamics、数値流体力学)は、プロペラや船体、省エネ付加
	設計	物の最適設計を補助する技術である。
		● 本設計技術を活用して、船型改善 (No.8) や省エネ付加物 (No.4、No.15) などの技術を支
		援できる。
1 - 7 - 7 - 7 - 7		ウェザールーティングは、船舶が航海中に遭遇する気象・海象を予測し、船舶の状態や性能、
		到着時間などを考慮して、燃料消費量や最短航海時間などを踏まえた最適航路を導くための
		システムである。
		● 本技術は、設備を搭載するだけではなく、適切に運用されることで省エネが図られる。
	,	● 旅客輸送や貨物輸送においては、運航事業者のみの判断で運航計画等を決定できるものでは
	(荷王連携) 	ない。そのため、定時性を維持するための技術的なサポートなどによって、荷主を含めた関
		係者が一体となった省エネが可能となる。
	船速最適化	● 船速最適化が省エネ運航に有効であることはよく知られているものの、入出港時間や船員労
		務時間の制限があるのが実情である。
		● 船速最適化は、これらの実情を踏まえた上で、省エネ運航に資する運航を行う技術である。
		例えば、荷役時間や離着桟時間の低減により、運航時の船速最適化を行うことなどが考えら
		れる。
	補機インバータ制	● インバータ制御によって、ポンプや通風装置などの補機の回転数制御を行い、適切な量の水
	御 	または空気を循環させる技術である。
		● インバータ制御は、陸上産業分野などで、交流モータの省エネ技術として広く使用されてい
		る。本技術は、船内のすべての電気モータに適用できる。
その他	電気推進	● 電動機でプロペラ軸を駆動して推進する技術である。
		● 通常の電気推進船は、ディーゼルエンジンで発電機を運転し、その電力で電動機を運転する。
		最適な発電機負荷バランスを取ることによって、トータルの出力を少なくできる。
		● 電気推進船は、推進用電動機の配置に自由度があり、抵抗が小さい船型を採用しやすくなる。
		また、低負荷域での運転がしやすく、運用方法によっては低速運航がしやすいといったメリ
	改善	陸上サポート (荷主連携) 船速最適化 補機インバータ制 御

				ットがある。
23			ハイブリッド推進	● 複数の推進動力源を用いる船舶であり、例えば、ディーゼルエンジンと蓄電池システムのハ
				イブリッド化などがある。
				● 電気推進船と同様、最適なエネルギーバランスを取ることによって、トータルの出力を少な
				くできる可能性がある。
24	離着桟	離着桟時	高機能スラスタ	● スラスタを高機能化することによって離着桟時間を短縮する技術である。
		間短縮		● 例えば、スタンスラスタの設置による操船性向上や、船底に吸入・吐出口を持つジェット式
				スラスタによるバラスト調整時間の削減などがある。
				● 通常の船舶において、離着桟時間は運航時間に比べて著しく短い。そのため、CO2削減効果
				は低いものの、船速の最適化に貢献できれば省エネ効果は高まる(No.20 参照)。
25			大舵角舵・特殊舵	● 大舵角舵などの特殊な舵を用いることによって離着桟時間を短縮する技術である。
				● 例えば、低抵抗特殊舵、フィッシュテール型舵、フラップ舵などがある。
26			高機能操船支援装	● 高機能操船支援装置としては、ジョイスティック操船や離着桟支援・自動化システムなどが
			置	あげられる。
				● 離着桟時間の短縮ばかりでなく、船員労務負荷低減にも貢献する技術である。
27			高機能甲板機器	● 係船ウインチの電動化や遠隔操作化、自動化など、甲板機器を高度化することによって離着
				桟時間および係船作業時間を短縮する技術である。
				● 係船作業時間の短縮ばかりでなく、船員労務負荷低減にも貢献する。
28	荷役	荷役効率	高効率機器の採用	● No.21 の補機インバータ制御と同様、インバータ制御によって、荷役機器に用いる交流モー
		改善		タの回転数制御を行い、適切な運転をさせる技術である。
29		荷役時間	運用効率改善	● 荷役オペレーションを支援する技術等によって、荷役時間を短縮する。
		短縮		● 一般に、荷役時間は運航時間に比べて著しく短い。そのため、CO2削減効果は低いものの、
				船速の最適化に貢献できれば省エネ効果を高められる(No.20 参照)。
30	停泊	電気機器		● No.21 と同じ技術であり、停泊時に使用する補機類をインバータ制御とすることで CO ₂ 排
		効率改善	御	出削減が図られる。
31		陸電利用	陸電利用	● 通常の船においては、停泊中、船内のディーゼルエンジン発電機を運転して船内電力を供給

している。陸電設備を利用することで、ディーゼルエンジン発電機の運転を止めることき、船舶から排出される CO₂を削減できる。	5見込
 ● 将来、風力や太陽光などのクリーンエネルギーの利用をした陸上電気を活用することがまれる。 32	
まれる。	
32 蓄電池 大容量蓄電池搭載 ◆ 大容量蓄電池による省エネは、電気推進船やハイブリッド推進船への適用のほか、No.	31 Ø
▼ 八石重田电池による自一小は、电利に延加(ケリノノ)「正延加(マルル)」	31 の
陸電利用と合わせて停泊時に利用することもできる。	
● 近年、リチウムイオン電池などの大容量蓄電池のコスト低減が図られ、船舶分野におV	いても
導入しやすい環境となりつつある。	
33 その他 排熱回収 高性能蒸気プラン ● 貨物のヒーティングなどでボイラを使用する船舶の場合、蒸気消費量を削減することに	よっ
ト て省エネ化を図ることができる。	
● 蒸気利用はボイラや主機排熱だけでなく、ディーゼルエンジン補機の排熱利用も可能	Ü
	1 (0)
る。 	
● 省エネ効果は大きくないが、生活用の給湯への利用などの用途もある。	
34 排熱回収発電 ● 排熱回収発電には、主機からの排熱エネルギーによって、タービンなどの外燃機関を用	いて
発電するシステムなどがある。	
● 未利用エネルギーを有効活用する技術であり、運航、荷役、停泊などのすべてのモード	にお
いて省エネ効果がある。	
35 船内電力 高効率船内電力機 ● 船内電力を削減するため、高効率機器を搭載する技術である。例えば、LED(発光ダイ	· オー
消費削減 器 (LED など) ド)を利用した照明機器などは既に普及しつつある技術である。	·
● 各種電気機器を自動でシャットオフする機能などもある。	
196 十四意地パウオ	
■ 加工に太陽电池、イルを設直して、太陽元のエイルなでも気に支援する政府である。	
● 太陽電池パネルにより得られる電力は、パネルの設置面積の影響を大きく受けるため、	週用
性および省エネ効果については船種により大きく異なる。	
37 定時運航 陸上サポート (機 ● エンジンや船内機器の状況を陸上監視するシステムであり、定時運航維持による省エネ	このほ
維持 器管理) か、船員労務負荷低減や安全性向上に貢献する技術である。	

38	発電装置	軸発電装置	•	主機の出力軸に発電機を装備することによって、ディーゼルエンジン発電機の運転を停止す
				ることができる。一般に、主機の効率はディーゼルエンジン発電機よりも高く、トータルの
				省エネ化が図られる可能性がある。